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Subdynamics Theory in the Functional Approach
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The formalism of subdynamics is extended to the functional approach to quantum
systems and is used for the Friedrichs model in which diagonal singularities in
states and observables are included. In this approach we compute the generalized
eigenvectors and eigenvalues of the Liouville±von Neumann operator, using an
iterative scheme. As complex generalized eigenvalues are obtained, the decay
rates of unstable modes are included in the spectral decomposition.

1. INTRODUCTION

For quantum systems with continuous spectrum, the presence of reso-

nances (small denominators) causes the failure of the usual perturbative

methods for computing eigenvalues and eigenvectors of the time evolution
generator. These difficulties have been considered as a manifestation of

general limitations to computability for unstable dynamical systems [1, 2].

In the work of the Brussels and Austin groups on large PoincareÂsystems,

we find an algorithm to overcome the problem of small denominators, which

are eliminated by a ª time ordering rule.º This is a rule for the regularization
of the perturbation terms, which can be interpreted as a generalized boundary

condition where terms corresponding to excitation processes are past-oriented,

while terms corresponding to the deexcitation and emission of radiation are

future-oriented [1, 3].

The construction provides a new type of spectral decomposition of the

Hamiltonian operator. For the Friedrichs model it was shown [1] that an
appropriate mathematical framework for the time-ordering construction is
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the theory of rigged Hilbert spaces of the Hardy class, formulated by Bohm

and Gadella [4±7].

For mixed states, the construction algorithm is a generalization of pertur-
bation theory based on the subdynamics decomposition of the Liouville±von

Neumann superoperator L [2, 8]. Through a nonunitary transformation V ,

the superoperator L is transformed into an operator Q 5 V 2 1 L V , which is

block diagonal in the degrees of correlations. The perturbative method to

obtain the spectral decomposition of the intermediate operator Q is regularized

by imposing the ª time-ordering rules,º which in this case means that conserva-
tion or increase of the degree of correlations is future-oriented, while decrease

of correlations is past-oriented [9]. This prescription explicitly incorporates

irreversibility into microscopic theories.

Usually, these perturbative algoritms are implemented in the so-called

ª box normalization,º in which the quantum system is assumed to be included

in a box with periodic boundary conditions, the size of the box becoming
infinite at some stage of the calculations. To perform this limit, it is necessary

to consider volume-dependent factors both for the diagonal components of

the density operator and the observables. In this limit the recurrence time of

the system is pushed to infinity.

The diagonal singularities of operators for large quantum system was
discovered by Van Howe [10±13]. At the same time, Prigogine and co-workers

[14±17] emphasized the importance of states with diagonal singularity in

non equilibrium statistical physics.

Based on the pioneering work of Segal [18], Antoniou et al. [19±21]

developed a formalism for quantum systems with continuous spectrum with-

out the box normalization.
The quantum states are functionals over a certain space of observables

2. Mathematically this means that the space 6 of states is contained in 2x.

Physically it means that the only thing we can really observe and measure

are the mean values of the observables O P 2 in states r P 6 , 2x

[ ^ O & r 5 ( r | O)]. This is the natural generalization of the usual trace of the

product of the density operator by the observable [Tr( r ÃOÃ)], which is not well
defined for systems with continuous spectrum.

In this paper, we extend the theory of subdynamics to the case of quantum

systems with diagonal singularities where, as stated in refs. 19±21], the states

are considered as functionals acting on the space of observables. The extended

formalism is applied to the Friedrichs model.

In Section 2 we summarize the functional approach to quantum mechan-
ics. The theory of subdynamics [2, 8, 9] is summarized in Section 3 and it

is extended by us to the functional approach. In Section 4 the extended

formalism is applied to compute the generalized spectral decomposition and

the time evolution for the Friedrichs model.
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2. FUNCTIONAL APPROACH TO QUANTUM MECHANICS

In the usual approach to quantum mechanics, a pure state is represented

by a normalized vector | c & of a Hilbert space *. The observables of the

system are represented by self-adjoint operators acting on *. The mean value
of an observable represented by the operator O in a pure state represented

by the vector | C & is given by

^ O & C 5 ^ C | O | C &

The time evolution of the state vector is given by the SchroÈ dinger

equation

i
d

dt
| C t & 5 H | C t & ,

where the operator H: * ® * is the Hamiltonian operator of the system.

The SchroÈ dinger equation has the solution

| C t & 5 e 2 iHt| C 0 &

Mixed states have no well-defined state vectors, but probabilities p a ( p a

$ 0, ( a p a 5 1) of being in the pure states represented by normalized vectors

| C a & . Therefore, the mean value of an observable O is given by

^ O & 5 o
a

p a ^ C a | O | C a &

The mixed state can be represented by the density operator r Ã5 ( a p a | C a &
^ C a | , having the following properties;

^ O & 5 Tr( r ÃO), Tr( r Ã) 5 o
a

p a ^ C a | C a & 5 o
a

p a 5 1

As each vector | C a & evolves in time according to the SchroÈ dinger equa-

tion, the time evolution of r Ãis

r Ãt 5 e 2 iHt r Ã0 e iHt

and r Ãt satisfies the Liouville±von Neumann equation

i
d

dt
r Ãt 5 L r Ãt (1)

L r Ã[ [H, r Ã] (2)

In a more general approach, the set of all possible observables of a
quantum system is represented by an algebra 2, while the possible states are
represented by a set 6 of functionals acting on 2 (6 , 2x).
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The mean value ^ O & r of the observable O in the state r is given by the

value of the functional r on O, which we denote by ( r | O),

^ O & r 5 ( r | O)

The last expression is antilinear in r and linear in O, i.e.,

( a 1 r 1 1 a 2 r 2 | O) 5 a *1 ( r 1 | O) 1 a *2 ( r 2 | O) (3)

( r | a 1O1 1 a 2O2) 5 a 1( r | O1) 1 a 2( r | O2) (4)

The algebra 2 is chosen to be an algebra of self-adjoint operators on

the vector space *, and since the mean value of the observables should be
a real number, we impose the following condition on the states:

( r | O) 5 ( r | O)* if O 5 O ² (5)

The generalization of the concept of trace is

Tr r 5 ( r | I ) 5 1 (6)

where I is the identity operator in the algebra 2.

For the time evolution in Heisenberg representation, the states are time

independent, while the observables evolve in time according to

Ot 5 e iHtOe 2 iHt

The time evolution r t of the states in SchroÈ dinger representation can be

obtained from

^ O & t 5 ( r t | O) 5 ( r 0 | e iHtOe 2 iHt)

From the previous equation we obtain

1 d

dt
r t | O 2 5 i ( r 0 | e iHt[H, O] e 2 iHt) 5 i ( r t | [H, O])

Writing L ² O [ [H, O] and omitting the observable O in the previous

equation, we obtain the generalized Liouville±von Neumann equation

2 i 1 d

dt
r t Z 5 ( r t | L ² (7)

To each superoperator M acting on 6 we can associate a corresponding

adjoint superoperator M ² acting on 2 and vice versa, with the formula

( M r | O) 5 ( r | M ² O) (8)

Using equation (8) with M 5 L , and the antilinearity property (3), in

equation (7), we obtain
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i
d

dt
r t 5 L r t

which is formally the same as equation (1). However, as r is not an operator,
equation (2) is no longer valid. The extended Liouville±von Neumann opera-

tor L acting on 6 is now given by

( L r | O) 5 ( r | L ² O) [ ( r | [H, O]) (9)

3. THE FORMALISM OF SUBDYNAMICS

Let us consider a linear space of states 6, and a linear operator L on 6
which is the generator of the time evolution of the states, i.e.,

i
d

dt
r t 5 L r t , r t P 6 (10)

Let us assume that the operator L can be decomposed into

L 5 L 0 1 L 1 (11)

where L 0 and L 1 are respectively called the ª freeº and ª interactionº parts of

L . It is also assumed that an interaction parameter l is included in L 1 to

modulate the interaction.

Starting with the projector P 0 on the invariant parts of the dynamics
( L 0 P 0 5 P 0 L 0 5 0), projectors P n (n 5 0, 1, . . .) are defined in such a way

that they satisfy

P n P n8 5 d nn8 P n, L 0 P n 5 P n L 0,
(12)

o
n 5 0

P n 5 I , P m( L 1)
n P 0 5 H 5 0 if n , m

Þ 0 if n 5 m

where I is the identity operator on 6. The last equation means that the

transition from P 0 r to P m r is a process of mth order in the interaction

parameter. The operator P m is called the projection on the mth degree of
correlation .

The main idea of subdynamics is to decompose the states through projec-

tors P n (n 5 0, 1, . . .) satisfying

P n P n8 5 d nn8 P n , L P n , 5 P n L , o
n 5 0

P n 5 I , lim
L1 ® 0

P n 5 P n (13)

i.e., projectors P n commuting with L which reduce to the projectors P n on

the degrees of correlation when the parameter of the interaction tends to zero.

Operators C n and D n , called creation and destruction of correlations,

are defined by
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C n 5 Q n C n P n, Q n P n 5 C n P n P n
(14)

D n 5 P n D n Q n; P n Q n 5 P n P n D n

where Q n 5 I 2 P n. From equations (10) and (14) we obtain

i
d

dt
( P n P n r ) 5 Q n P n P n r (15)

Q n 5 P n L P n 1 P n L C n P n (16)

P n 5 ( P n 1 C n)( P n 1 D n C n)
2 1( P n 1 D n) (17)

[ L 0, P m C n] 5 ( P m C n 2 P m) L 1( P n 1 C n) (18)

[ L 0, D n P m] 5 ( P n 1 D n) L 1( P m 2 D n P m) (19)

The last two equations have the form [ L 0, X ] 5 Y , having the forward

(backward) solutions

X 6 5 i #
6 `

0

dt e 2 i L 0
t Y e i L 0

t

The following ª time-ordering ruleº is chosen: the 1 ( 2 ) sign is used
for X 5 P m C n with m . n (m , n), and for X 5 D n P m with n . m (n , m).

Therefore, the creation (destruction) of correlations, is future (past) oriented, i.e.,

P m C n 5 i #
6 `

0

dt e 2 i L 0
t( P m C n 2 P m) L 1( P n 1 C n)e

i L 0
t, m : n

D n P m 5 i #
6 `

0

dt e 2 i L 0
t( P n 1 D n) L 1( P m 2 D n P m)e i L 0

t, m " n (20)

The two previous equations can be solved iteratively to the required

order in the interaction parameter, starting with the zeroth-order solutions

C (0)
n 5 D (0)

n 5 0

Once C n and D n are obtained, the intermediate superoperators Q n 5
P n Q n P n can be computed using (16). The block diagonal superoperator

Q 5 (
n

Q n satisfies

L 5 V Q V 2 1

V 5 o
n

( P n 1 C n) (21)

V 2 1 5 o
n

( P n 1 D n C n)
2 1( P n 1 D n)
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and therefore it is isospectral with the Liouville±von Neumann operator L .

This property can be used to obtain the spectral decomposition of L in

terms of the spectral decomposition of the superoperator Q , with the same
generalized eigenvalues.

The formalism of subdynamics originally stated on the space of density

operators can be easily translated to the functional approach of quantum

mechanics described in the previous section. All the formulas of this section

are still valid, but we should remember that the superoperators are in this

case defined on the space 6 of functionals.
It is operationally more convenient to rewrite all the previous equations

for the corresponding adjoint superoperators, acting on the space of observ-

ables 2. This is easily done by using the adjoint relation

( a M N r | O) 5 ( r | a * N ² M ² O)

For example, equations (12) for the projections on the degrees of correla-

tions are replaced by

P ²
n P ²

n8 5 d nn8 P
²
n, L ²

0 P ²
n 5 P ²

n L ²
0,

(22)

o
n

P ²
n 5 I ² , P ²

0 ( L ²
1)

n P ²
m 5 H 5 0 if n , m

Þ 0 if n 5 m

where I ² is the identity superoperator on 2.

Equations (20) for the creation and destruction of correlations trans-

form into

C ²
n P ²

m 5 2 i #
6 `

0

dt e 2 i L ²
0t ( P ²

n 1 C ²
n) L ²

1 ( C ²
n P ²

m 2 P ²
m) e i L ²

0t, m : n (23)

P ²
m D ²

n 5 2 i #
6 `

0

dt e 2 i L ²
0t ( P ²

m 2 P ²
m D ²

n) L ²
1 ( P ²

n 1 D ²
n) e i L ²

0t, m " n (24)

where now

C ²
n 5 P ²

n C ²
n Q ²

n, D ²
n 5 Q ²

n D ²
n P ²

n, Q ²
n 5 I ² 2 P ²

n (25)

Equations (23) and (24) can be written in a form which is more suitable

for calculations. Let us consider the generalized left and right eigenvectors

( a | and | b ) of L ²
0, having degrees of correlation n a and n b , i.e.,

( a | L ²
0 5 v a ( a | , L ²

0 | b ) 5 v b | b ), ( a | 5 ( a | P ²
n a , | b ) 5 P ²

n b | b )
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From equation (23) we obtain

( a | C ²
n | b ) 5 2 i #

6 `

0

dt e i( v b 2 v a )t ( a | ( P ²
n 1 C ²

n) L ²
1 ( C ²

n 2 Q ²
n) | b ), n b : n a

If we use in the previous expression the identity

#
6 `

0

dt e ixt 5
i

x 6 i0

we obtain

( a | C ²
n | b ) 5

1

v b 2 v a 6 i0
( a | ( P ²

n 1 C ²
n) L ²

1 ( C ²
n 2 Q ²

n) | b ), n b : n a

(26)

In the same way we obtain

( a | D ²
n | b ) 5

1

v b 2 v a 6 i0
( a | ( Q ²

n 2 D ²
n) L ²

1 ( P ²
n 1 D ²

n) | b ), n b : n a

(27)

The intermediate operator Q ² is

Q ² 5 o
n

Q ²
n, Q ²

n 5 P ²
n L ² P ²

n 1 P ²
n C ²

n L ² P ²
n (28)

The intermediate operator Q ² is isospectral with L ² ,

L ² 5 ( V ² ) 2 1 Q ² V ²

V ² 5 o
n

( P ²
n 1 C ²

n) (29)

( V ² ) 2 1 5 o
n

n
( P ²

n 1 D ²
n) ( P ²

n 1 C ²
n D ²

n)
2 1

For ( P ²
n 1 C ²

n D ²
n)

2 1 we can use the following expansion:

( P ²
n 1 C ²

n D ²
n)

2 1 5 P ²
n 1 o

`

j 5 1

( 2 1) j ( C ²
n D ²

n)
j (30)

The spectral decomposition of the intermediate operator Q ²
n, is a set of

right (left) generalized eigenvectors | uÄ n a ) [(un a | ], satisfying

(uÄ n a | um b ) 5 d nm d a b , Q ²
n 5 o

a
zn a | uÄ n a ) (un a | , P ²

n 5 o
a

| uÄ n a )un a | (31)

where a and b are discrete or continuous indexes. In the later case the sums
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in the previous expression should be replaced by integrals and the Kronecker

by Dirac deltas.

The spectral decomposition of L ² can be obtained from the spectral
decomposition of the intermediate operator U ² . From equations (29) and (31)

it follows that

L ² 5 o
n a

zn a | fÄ n a )( fn a | (32)

where

, ) fn a ) 5 ( V ² ) 2 1 | uÄ n a ) ( fn a | 5 (un a | V ² (33)

The time evolution of a state functional governed by the generalized

Liouville±von Neumann equation

2 i
d

dt
( r t | 5 ( r t | L ² (34)

is given by

( r t | 5 o
n a

e i ? zn a ? t ( r 0 | fÄ n a )( fn a | (35)

3.1. Perturbative Solutions and l 2t Approximation

If we replace the zeroth-the order approximation for C ²
n and D ²

n (i.e.,
C ² (0)

n 5 D ² (0)
n 5 0) in the right-hand side of equations (26) and (27), we can

obtain the first-order approximations:

( a | C ² (1)
n | b ) 5

2 1

v b 2 v a 6 i0
( a | P ²

n L ²
1 Q ²

n | b ), n b : n a (36)

( a | D ² (1)
n | b ) 5

1

v b 2 v a 6 i0
( a | Q ²

n L ²
1 P ²

n | b ), n b " n a (37)

With C ² (1)
n and D ² (1)

n it is possible to obtain the intermediate operators

Q ²
n up to second order, using equation (28),

Q ² (2)
n 5 P ²

n L ² P ²
n 1 P ²

n C ² (1)
n L ²

1 P ²
n (38)

From equations (29), (30), (36), and (37), we can compute V ² and

( V ² ) 2 1 up to first order

V ² (1) 5 o
n

( P ²
n 1 C ² (1)

n )

( V ² ) 2 1(1) 5 o
n

( P ²
n 1 D ² (1)

n ) (39)



174 Laura and Id Betan

The first-order expressions for C ²
n and D ²

n given in equations (36) and

(37) can be replaced in the right-hand side of equations (26) and (27) to

obtain the next-order approximation. In this way, through the computation
of the eigenvalues and eigenvectors of the intermediate operator Q ² , it is

possible to obtain the eigenvalues and eigenvectors of L ² as a power expansion

in the interaction parameter

zn a 5 z (0)
n a 1 z (1)

n a 1 z (2)
n a 1 ? ? ?

| fÄn a ) 5 | fÄ (0)
n a ) 1 | fÄ (1)

n a ) 1 | fÄ (2)
n a ) 1 ? ? ? (40)

( fn a | 5 ( f (0)
n a | 1 ( f (1)

n a | 1 ( f (2)
n a | 1 ? ? ?

Taking into account equations (33) and (39) relating the eigenvectors

of Q ² and L ² , we obtain

| fÄn a ) 5 | uÄ (0)
n a ) 1 D ² (1)

n | uÄ (0)
n a ) 1 | uÄ (1)

n a ) 1 ? ? ?

( fn a | 5 (u (0)
n a | 1 (u (0)

n a | C ² (1)
n 1 (u (1)

n a | 1 ? ? ? (41)

Replacing (40) and (41) in (35), we obtain the following expression for

the time evolution:

( r t | 5 o
n a

exp [i (z (0)
n a 1 z (1)

n a 1 z (2)
n a 1 ? ? ? )t]

3 ( r 0 | [ | uÄ (0)
n a )(u (0)

n a | 1 | uÄ (0)
n a )(u (0)

n a | C ² (1)
n

1 D ² (1)
n | uÄ (0)

n a )(u (0)
n a | 1 | uÄ (1)

n a )(u (0)
n a | 1 | uÄ (0)

n a )(u (1)
n a | 1 ? ? ? ]

If we omit first-order contributions coming from the eigenvectors and

third-order contributions from the eigenvalues, the previous expression has

the following approximated form:

( r t | > o
n a

exp [i (z (0)
n a 1 z (1)

n a 1 z (2)
n a )t] ( r 0 | uÄ (0)

n a )(u (0)
n a | ) (42)

As we omitted first-order terms in the eigenvectors, a necessary condition

for equation (42) to be valid is

l , , 1 (43)

where l is the interaction parameter. Moreover, as we considered the eigenval-

ues up to second order, a second condition involving the possible values of
time is necessary for equation (42) to be valid

l 3t , , 1 (44)
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which together with (43) gives

t & l 2 2 (45)

In summary, the time evolution is given by equation (42) if the interaction
is small ( l , , 1) and the time is not too large (t & l 2 2).

Conditions (43) and (45) appear in the literature as the ª l 2t
approximation.º

4. FRIEDRICHS MODEL

4.1. Observables, States, and Degrees of Correlation

The Hamiltonian of the Friedrichs model is

H 5 H0 1 V

H0 5 m | 1 & ^ 1 | 1 #
`

0

d v v | v & ^ v | (46)

V 5 #
`

0

d v V v ( | v & ^ 1 | 1 | 1 & ^ v | )

where the vectors | 1 & and | v & form a complete orthonormal set

^ 1 | 1 & 5 1, ^ 1 | v & 5 ^ v | 1 & 5 0, (47)

^ v | v 8 & 5 d ( v 2 v 8), I 5 | 1 & ^ 1 | 1 #
`

0

d v | v & ^ v |

Let us consider the following definitions

| 1) [ | 1 & ^ 1 | , | v ) [ | v & ^ v | , | 1 v ) [ | 1 & ^ v | , (48)

| v 1) [ | v & ^ 1 | , | v v 8) [ | v & ^ v 8 |

Any element O belonging to the space of observables 2 can be written

in terms of the operators defined in (48),

| O) 5 O1 | 1) 1 # d v O v | v ) 1 # d v O1 v | 1 v )

1 # d v O v 1 | v 1) 1 # d v # d v 8 O v v 8 | v v 8) (49)

Notice that we explicitly included a diagonal singularity through the

term * d v O v | v ).
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We also consider the states as functionals acting on the operators. For

this purpose it is convenient to define a set of functionals (1 | , ( v | , (1 v | , ( v 1 | ,
and ( v v 8 | with the following properties:

(1 | O) 5 O1, ( v | O) 5 O v , (1 v | O) 5 O1 v ,
(50)

( v 1 | O) 5 O v 1, ( v v 8 | O) 5 O v v 8

or equivalently

(1 | 1) 5 1, (1 | v ) 5 (1 | v 1) 5 (1 | 1 v ) 5 (1 | v v 8) 5 0

( v | v 8) 5 d ( v 2 v 8), ( v | 1) 5 ( v | 1 v 8) 5 ( v | v 81) 5 ( v | v 8 v 9) 5 0

(1 v | 1 v 8) 5 d ( v 2 v 8),

(1 v | 1) 5 (1 v | v 8) 5 (1 v | v 81) 5 (1 v | v 8 v 9) 5 0 (51)

( v 1 | v 81) 5 d ( v 2 v 8), ( v 1 | 1) 5 ( v 1 | v 8) 5 ( v 1 | 1 v 8) 5 ( v 1 | v 8 v 9) 5 0

( v v 8 | a a 8) 5 d ( v 2 a ) d ( v 8 2 a 8),

( v v 8 | 1) 5 ( v v 8 | 1 a ) 5 ( v v 8 | a 1) 5 ( v v 8 | a ) 5 0

In terms of these functionals, we assume that any element ( r | of the

space of states 6 , 2x can be written as

( r | 5 r *1 (1 | 1 # d v r *v ( v | 1 # d v r *1 v (1 v | 1 # d v r *v 1( v 1 |

1 # d v # d v 8 r *v v 8 ( v v 8 | (52)

where

r *1 5 r 1, r *v 5 r v , r *1 v 5 r v 1, r *v v 8 5 r v 8 v (53)

r *1 1 # d v r *v 5 1 (54)

Equations (53) are the conditions for r to be a positive functional, while

(54) is a consequence of the total probability condition ( r | I ) 5 1. In what
follows ( r | I ) will be called the generalized trace of the state r [ | I ) [ | 1) 1
* d v | v ) is the identity operator in 2].

By using the basis for states and observables defined through (48) and

(50), we can also write
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L ²
0 5 # d v (m 2 v ) | 1 v )(1 v | 1 # d v ( v 2 m) | v 1)( v 1 |

1 # d v # d v 8 ( v 2 v 8) | v v 8)( v v 8 |

L ²
1 5 # d v V v [ | v 1) 2 | 1 v )](1 | 1 # d v V v [ | 1 v ) 2 | v 1)]( v |

1 # d v [ 2 V v | 1) 1 # d v 8 V v 8 | v 8 v )](1 v |

1 # d v [V v | 1) 2 # d v 8 V v 8 | v v 8)]( v 1 |

1 # d v # d v 8 [V v | 1 v 8) 2 V v 8 | v 1)]( v v 8 | (55)

where L ²
0 and L ²

1 are the ª freeº and ª interactionº parts of the Liouville±von

Neumann operator acting on 2, i.e.,

L ²
0O [ [H0, O], L ²

1 O [ [V, O], O P 2 (56)

The diagonal and off-diagonal projectors acting on 2 are defined by

P ²
0 [ | 1)(1 | 1 # d v | v )( v |

Q ²
0 [ # d v | 1 v )(1 v | 1 # d v | v 1)( v 1 | 1 # d v d v 8 | v v 8)( v v 8 | (57)

The off-diagonal projector Q ²
0 can be decomposed into

Q ²
0 5 P ²

1 1 P ²
2, P ²

1 [ # d v | 1 v )(1 v | 1 # d v | v 1)( v 1 | ,
(58)

P ²
2 [ # d v # d v 8 | v v 8)( v v 8 |

P ²
0, P ²

1, and P ²
2 are the projectors corresponding to degrees of correlation

zero, one, and two respectively, i.e.,
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P ²
0 ( L ²

1)
0 P ²

0 5 P ² 2
0 Þ 0

P ²
0 ( L ²

1)
0 P ²

1 5 P ²
0 P ²

1 5 0, P ²
0 L ²

1 P ²
1 Þ 0

P ²
0( L ²

1)
0 P ²

2 5 P ²
0 P ²

2 5 0, P ²
0 L ²

1 P ²
2 5 0, P ²

0( L ²
1)

2 P ²
2 Þ 0 (59)

4.2. Creation, Destruction, and Intermediate Operators

Using equations (36) and (37) for the Friedrichs model, we obtain for

the creation and destruction operators up to second order

C ² (1)
0 5 # d v V v F | 1)(1 v |

m 2 v 1 i0
2

| 1)( v 1 |
v 2 m 1 i0 G

C ² (1)
1 5 # d v V v F | v 1)[(1 | 2 ( v | ]

v 2 m 1 i0
2

| 1 v )[(1 | 2 ( v | ]
m 2 v 1 i0 G

1 # d v d v 8 F V v 8 | v 1)( v v 8 |
m 2 v 8 1 i0

2
V v | 1 v 8) ( v v 8 |
v 2 m 1 i0 G

C ² (1)
2 5 # d v d v 8 F V v 8

v 8 2 m 1 i0
| v 8 v )(1 v | 1

V v 8

v 8 2 m 2 i0
| v v 8)( v 1 | G

D ² (1)
0 5 # d v V v F | 1 v )(1 |

m 2 v 1 i0
1

| v 1) (1 |
m 2 v 2 i0 G (60)

2 # d v V v F | 1 v )( v |
m 2 v 1 i0

1
| v 1)( v |

m 2 v 2 i0 G
D ² (1)

1 5 # d v V v F | 1)( v 1 |
v 2 m 1 i0

2
| 1)(1 v |

m 2 v 1 i0 G
1 # d v d v 8 V v 8 F | v v 8)( v 1 |

m 2 v 8 1 i0
2

| v 8 v )(1 v |
v 8 2 m 1 i0 G

D ² (1)
2 5 # d v d v 8 F V v | 1 v 8)( v v 8 |

v 2 m 1 i0
2

V v 8 | v 1)( v v 8 |
m 2 v 1 i0 G

Then, the intermediate operator Q ²
n up to second order can be obtained using

equation (38),

Q ² (2)
0 5 2 p iV2

m | 1)[(1 | 2 (m | ], (m | [ ( v | v 5 m

Q ² (2)
1 5 # d v [m 2 v 2 b ] | 1 v )(1 v | 1 # d v [ v 2 m 2 b *] | v 1)( v 1 |
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1 # d v d v 8 V v V v 8 F | 1 v 8)(1 v |
m 2 v 1 i0

1
| v 8 1)( v 1 |
m 2 v 1 i0

1
| v 8 1)(1 v |
m 2 v 8 2 i0 G

1 # d v d v 8 V v V v 8 F | v 81)( v 1 |
v 8 2 m 1 i0

1
| 1 v 8)( v 1 |
v 2 m 1 i0

1
| 1 v 8)( v 1 |

v 8 2 m 2 i0 G
b [ #

`

0

d v V 2
v

v 2 m 1 i0
, Re b 5 #

`

0

d v V 2
v P 1 1

v 2 m 2 , Im b 5 2 p ? V 2
m

Q ² (2)
2 5 # d v d v 8 ( v 8 2 v ) | v v 8)( v v 8 |

1 # d v d v 8 d v 9 F V v V v 9 | v 9 v 8)( v v 8 |
v 9 2 m 1 i0

2
V v 8 V v 9 | v v 9)( v v 8 |

v 9 2 m 2 i0 G (61)

4.3. Generalized Spectral Decomposition and Time Evolution

From the explicit form of Q ²
n given up to second order in equations (61)

for Friedrichs model, the generalized eigenvectors and eigenvalues can be
computed up to zero and second order, respectively. The results are shown

in Table I.

The generalized eigenvalues and eigenvectors given in the previous

expression can be replaced in equation (42), to obtain the following time

evolution:

( r t | 1) > e 2 2 p V 2
mt ( r 0 | 1)

( r t | v ) > ( r 0 | v ) 1 [1 2 e 2 2 p V 2
mt] ( r 0 | 1) d ( v 2 m)

( r t | 1 v ) > e i(m 2 v 2 b )t ( r 0 | 1 v )

( r t | v 1) > e i( v 2 m 2 b *)t( r 0 | v 1)

( r t | v v 8) > e i( v 2 v 8)t( r 0 | v v 8)

The first equation shows the decay of the discrete component ( r t | 1) of

Table I

Q ²
n zn a | uÄ n a ) (un a |

Q ²
0 z v 5 0 | uÄ v ) 5 d ( v 2 m) | 1) 1 | v ) (u v | 5 ( v |

z1 5 2 p iV2
m | uÄ 1) 5 | 1) (u1 | 5 (1 | 2 ( v 5 m |

Q ²
1 z1 v 5 m 2 v 2 b | uÄ 1 v ) 5 | 1 v ) (u1 v | 5 (1 v |

z v 1 5 v 2 m 2 b * | u v 1) 5 | v 1) (u v 1 | 5 ( v 1 |
Q ²

2 z v v 8
5 v 2 v 8 | uÄ v v 8

) 5 | v v 8) (u v v 8
| 5 ( v v 8 |
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the state, with a rate 2 p V 2
m. Simultaneously, there is a growing term in the

continuous distribution ( r t | v ), with a sharp peak for the energy v 5 m of

the decaying mode.

5. CONCLUSIONS

We extended the formalism of subdynamics to the functional approach

to quantum mechanics, in which the states are represented by functionals

acting on the operators representing observables.

The generalized spectral decomposition is obtained through an interme-
diate superoperator Q ² isospectral to the Liouville±von Neumann superopera-

tor L ² ( L ² 5 V ² Q ² V 2 1² ). The small denominators appearing in the perturbative

expansions due to the continuous spectrum are regularized by the ª i e -ruleº

[a time ordering prescription in which the increase (decrease) of correlations

is future (past) oriented]. Due to this time-ordering rule, Q ² and therefore L ²

may have complex eigenvalues.
Considering eigenvalues up to second order and eigenvectors up to zero

order, the time evolution is given by

( r t | > o
n a

exp [i (z (0)
n a 1 z (1)

n a 1 z (2)
n a )t] ( r 0 | uÄ (0)

n a )(u (0)
n a |

where | uÄ (0)
n a ) and (u (0)

n a | are generalized right and left eigenvectors of Q ²
n

computed up to zero order. For the previous expression to be valid, it is

necessary that the interaction parameter be small and the time not too large,

i.e., l # 1 and t & l 2 2.

When this procedure is applied to the Friedrichs model, we obtain

( r t | 1) > e 2 2 p V 2
m t( r 0 | 1)

( r t | v ) > ( r 0 | v ) 1 [1 2 e 2 2 p V 2
mt]( r 0 | 1) d ( v 2 m)

( r t | 1 v ) > e i(m 2 v 2 b )t( r 0 | 1 v )

( r t | v 1) > e i( v 2 m 2 b *)t( r 0 | v 1)

( r t | v v 8) > e i( v 2 v 8)t( r 0 | v v 8)

The first equation shows the decay of the discrete component ( r t | 1) of

the state, with a rate 2 p V 2
m. Simultaneously, there is a growing term in the

continuous distribution ( r t | v ), with a sharp peak for the energy v 5 m of

the decaying mode.
It is interesting to note that both decaying and growing terms are purely

exponential. This may appear at first sight as a contradiction with the well-

known Zeno and Khalfin effects, which are deviations from exponential

decays for small and big times. However, the previous expressions are not
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valid approximations for very big times. Moreover, the Zeno effect implies

(d /dt)( r t | 1)t 5 0. In our approximation, if we compute this derivative, we obtain

that it is of second order in the interaction parameter. As we neglected this
order in the approximation, this result does not contradict the Zeno effect.

In spite of the fact that the complex spectral decomposition can be

obtained analytically for the Friedrichs model [22±24], this paper shows that

this approach is potentially suitable to deal with more complicated decaying

processes, where it is impossible to obtain exact solutions
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